RMSE

2021/10/30

# gma.math.Evaluation.RMSE(Measure, Simulation, Axis = 0)


功能:【RMSE】。均方根误差。

参数:

 Measure:list||array。第一组数据。

 Simulation:list||array。第二组数据。

可选参数:

 Axis = int 。数据评估使用的轴。

返回:float||array


示例:

from gma import math
1

序列(1 维)

MEA = [15.1, 33, 88, 158.4]
SIM = [0.8, 1.7, 7.8, 7.4]
EVA = math.Evaluation.RMSE(MEA, SIM)
1
2
3

>>> 87.20266624364189

更多维度

MEA = [[ 0.05120073,  0.05444646,  0.05096978,  0.05096978],
       [ 0.16359164,  0.18061367,  0.16168582,  0.16168582],
       [-0.07699195, -0.07706093, -0.07740774, -0.07740774],
       [ 0.17469311,  0.19315895,  0.15614156,  0.15614156],
       [ 0.2006536 ,  0.18265162,  0.15587704,  0.15587704]]
SIM = [[ 0.22857143,  0.22911051,  0.1908772 ,  0.1908772 ],
       [ 0.2956548 ,  0.3080475 ,  0.22230114,  0.22230114],
       [ 0.32706437,  0.35      ,  0.29352903,  0.29352903],
       [ 0.03658536,  0.03522885,  0.03478987,  0.03478987],
       [-0.10225949, -0.07193749, -0.05467691, -0.05467691]]

## 按照第一个维度计算
EVA0 = math.Evaluation.RMSE(MEA, SIM, Axis = 0)
print('"Axis = 0":', EVA0)
## 按照第二个维度计算
EVA1 = gma.math.Evaluation.RMSE(MEA, SIM, Axis = 1)
print('"Axis = 1":', EVA1)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

>>> "Axis = 0": [0.25416241 0.25254128 0.20971485 0.20971485]
>>> "Axis = 1": [0.15899376 0.10127746 0.39396406 0.13552503 0.2476075 ]