NRMSE
洛 2021/10/30
# gma.math.Evaluation.NRMSE(Measure, Simulation, Axis = 0)
功能:【NRMSE】。归一化均方根误差。
参数:
Measure:list||array
。第一组数据。
Simulation:list||array
。第二组数据。
可选参数:
Axis = int
。数据评估使用的轴。
返回:float||array
。
示例:
from gma import math
1
序列(1 维)
MEA = [15.1, 33, 88, 158.4]
SIM = [0.8, 1.7, 7.8, 7.4]
EVA = math.Evaluation.NRMSE(MEA, SIM)
1
2
3
2
3
>>> 1.1844165194382599
更多维度
MEA = [[ 0.05120073, 0.05444646, 0.05096978, 0.05096978],
[ 0.16359164, 0.18061367, 0.16168582, 0.16168582],
[-0.07699195, -0.07706093, -0.07740774, -0.07740774],
[ 0.17469311, 0.19315895, 0.15614156, 0.15614156],
[ 0.2006536 , 0.18265162, 0.15587704, 0.15587704]]
SIM = [[ 0.22857143, 0.22911051, 0.1908772 , 0.1908772 ],
[ 0.2956548 , 0.3080475 , 0.22230114, 0.22230114],
[ 0.32706437, 0.35 , 0.29352903, 0.29352903],
[ 0.03658536, 0.03522885, 0.03478987, 0.03478987],
[-0.10225949, -0.07193749, -0.05467691, -0.05467691]]
## 按照第一个维度计算
EVA0 = math.Evaluation.NRMSE(MEA, SIM, Axis = 0)
print('"Axis = 0":', EVA0)
## 按照第二个维度计算
EVA1 = math.Evaluation.NRMSE(MEA, SIM, Axis = 1)
print('"Axis = 1":', EVA1)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
>>> "Axis = 0": [2.47650617 2.36546135 2.34440616 2.34440616]
>>> "Axis = 1": [ 3.0636592 0.60683615 -5.10203195 0.7970476 1.42495753]
提示
基于栅格的运算请参考 CORR。